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THE DOUBLE HELIX IN 
ARCHITECTURE AND ENGINEERING 

 
 
1. INTRODUCTION – THE SYDNEY OPERA HOUSE CAR PARK 

The Sydney Opera House is widely accepted as one of the great buildings, possibly 
the greatest, of the 20th century.  For more than a decade after its completion in 1973 
one of the great difficulties for the 2000 or more people attending performances, was 
the absence of parking within reasonable distance of Bennelong Point.  After various 
false starts over more than 15 years, the New South Wales Government put out a 
tender in early 1990 for private enterprise to build and operate an 1100 vehicle 
underground parking station.  The facility was required to be built in a restricted 
footprint area beneath the Botanic Gardens, only a few hundred metres from the 
Opera House forecourt. 
 
I was part of a team that submitted a design on behalf of the Mulpha Group that 
comprised two side-by-side rectangular underground structures with cross 
connections at the ends.  Each rectangular structure was much like a traditional 
above-ground parking station, with narrow ramps and tight corners.  And if you were 
the last patron in either structure you would have to wind your way down seven or 
eight levels and occupy the last place in the bottom corner.  The design had other 
unattractive features.  Ventilation of the two chambers was difficult and expensive, 
and egress stairs knocked out a significant number of valuable parking spaces.  
Much to the surprise of some of us, Mulpha’s submission was accepted by the 
Government.  Basically the competitors’ designs were much the same and Mulpha 
had a better financial deal. 
 
The award was made on a Friday.  I went home.   
 
However, one of the projects structural engineers, Warwick Colefax, and the project 
architect, Ron Barrelle, got to drinking a few beers.  And as they mulled over the 
issues of ventilation, lost parking places due to fire escapes, and having to drive 
down tight corners into the bowels of the earth to get to the last parking place, Ron 
Barrelle had an idea.  He said he had seen an above-ground parking station in Paris 
that was a helix, and it self-ventilated up through the spiral.  Warwick patiently 
pointed out that this would not work underground.  But then, probably encouraged by 
the contents and shape of a beer can, the lights started going on and they started to 
sketch.  Within a few hours they had developed the outline of a concept of a 30m 
deep cavern, circular in plan with a central rock pillar, and this donut shaped cavern 
contained a double helix reinforced concrete floor structure that could be 
interconnected at any location simply by tunnelling horizontally through the central 
pillar of rock.  The gently sloping ramps of the helix provided for parking and access.  
Now the last parking place was not at the bottom, but at the top.  Ventilation was 
easy; only one cavern.  Travel distances were minimised and hence the required 
number of fire stairs was also reduced.  The total volume of excavation was reduced, 
and lo and behold, it could be fitted within the originally allocated development 
boundaries.  The footprint area was reduced from 7900 square metres to 3000 
square metres.   
 
A stringent condition of tender was that under no circumstances was the ground 
surface in the Botanic Gardens to be disturbed for any purpose so the only question 
was could such a cavern be built, with only 6m of rock cover? 
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On the Monday I turned up at work, oblivious of Friday’s beer befuddled discussion, 
and the detailed work that followed over the weekend.  Mid-morning I received a fax 
and a phone call.  Simple question; could such a cavern be built?  I had never seen 
anything like it.  Nobody had, because it had never been done before. 
 
If one is very fortunate then maybe once in a lifetime one will see a concept or design 
of sheer brilliance.  That’s what I saw that morning.  And we concluded that the 
cavern could be built with no disturbances to the ground surface. 
 
 
 

 
 

Sketch of the Sydney Opera House Carpark 
 
 
 
 
By the end of that week the NSW Government agreed that the drawings upon which 
they had awarded the project could be thrown away, and the double helix was 
adopted.  A year later the facility was opened and it works brilliantly.  And that’s when 
my fascination with the double helix began. 
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Part of the near-completed excavation for the Sydney Opera House carpark;  
the central core pillar is on the right,  

the slot in the left hand side is for the stairwell 
 
Who first thought of using a double helix in a building of any sort?  And then who first 
thought of using a single helix, of making a screw? 
 
My quest has taken me to interesting places, and to thought-meetings with 
fascinating people, from Archimedes to an Iranian architect in 12th century 
Afghanistan.  And this journey I would like to share with you. 
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2. THE CONTINUOUS HELIX 

A spiral is a curve that winds around a fixed point with continuously increasing radius, 
like a flat-coiled rope. 
 
A helix is an inclined plane wrapped around a cylinder.  It is quite a sophisticated 
three-dimensional shape, but appears in nature in vines climbing up a tree, and 
within some seashells.  As such the idea of a helix would have been apparent to 
early humans.  However, the question as to when did a human being first make use 
of a helix in a tool or in a building is fascinating and difficult to answer. 
 
As a school boy I, like so many, had been intrigued by the story of how Archimedes 
solved the problem of whether or not Hieron, the King of Syracuse, had been diddled 
in regard to the gold content of a new wreath.  In effect Archimedes worked out how 
to determine the volume of this complex piece of jewellery, and in the process 
developed the foundation of the science of hydrostatics, the behaviour of fluids at 
rest.  At school I also learned that at the time of the ancient Egyptians, irrigation from 
the Nile had been hugely improved by replacement of the old shaduf, a bucket on the 
end of a seesaw arrangement, by a device called an Archimedean screw.  Little was I 
to know that 45 years later my search for the first recorded application of a helix 
engineering would lead me back to this Egyptian “pump”. 
 
It is not possible to say who has been the greatest genius: Beethoven, Einstein, 
Newton, Leonardo da Vinci, Michelangelo?  It is not even possible to say who has 
been the greatest mathematician: Gauss, Euler, Newton?  However, it is of little 
doubt that Archimedes was the greatest mathematician and, probably genius, of 
antiquity.  What he described as The Method is, post-Newton, called Integration.  He 
used this approach to work out that the ratio of a circumference to a circle to its 
diameter, π, lies between 220/70 and 220/71.  He arrived at these upper and lower 
bounds by starting with one hexagon that circumscribed a circle, and one that 
inscribed the circle, and then successively increased the number of sides until the 
hexagons were 96 sided figures that trapped the circumference of the circle. 
 
Archimedes was a Sicilian and was born in about 287 BC.  As a young man he went 
to Alexandria to study mathematics and there either overlapped with, or followed just 
after, Euclid and his fellow mathematicians who were responsible for producing the 
most important mathematical textbook for all time, “Elements”.  The Museum of 
Alexandrian was at that time a type of independent research institute funded by the 
Ptolomies, who followed on from the Egyptian pharaohs.  
 
There is no doubt that Archimedes discovered the helical water screw while at 
Alexandria.  Whether he invented it is another matter, and one discussed eruditely by 
Dalley and Oleson1

 

.  This device is ascribed to Archimedes by certain ancient writers 
such as Diodorus of Sicily (about 50BC) in relation to irrigation from the Nile, and 
particularly, in a wonderful description of Roman mine dewatering in Spain: 

“At a depth they sometimes break in on rivers flowing beneath the surface 
whose strength they overcome by diverting their welling tributaries off to the 
side in channels.  Since they are driven by the well-founded anticipation of 
gain, they carry out their enterprises to the end, and most incredibly of all, 
they draw off the streams of water with the so-called Egyptian screw, which 

                                                
1 Stephanie Dalley and John Peter Oleson.  “Sennacherib, Archimedes, and the Water 
Screw”, Technology and Culture, Vol 44, Jan 2003. 
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Archimedes the Syracusan invented (or ‘thought about’, or ‘observed’2

 

) when 
he visited Egypt”. 

Vitruvius (1st Century BC) provides a description drawing of an eight helix water 
screw, but does not ascribe it to Archimedes. 
 
Vitruvius’ description is as follows. 
 

“1. There is a machine, on the principle of the screw, which raises water with 
considerable power, but not so high as the wheel. It is contrived as follows. A 
beam is procured whose thickness, in digits, is equal to its length in feet; this 
is rounded. Its ends, circular, are then divided by compasses, on their 
circumference, into four or eight parts, by diameters drawn thereon. These 
lines must be so drawn, that when the beam is placed in an horizontal 
direction, they may respectively and horizontally correspond with each other. 
The whole length of the beam must be divided into spaces equal to one 
eighth part of the circumference thereof. Thus the circular and longitudinal 
divisions will be equal, and the latter intersecting lines drawn from one end to 
the other, will be marked by points. 

2. These lines being accurately drawn, a small flexible ruler of willow or withy, 
smeared with liquid pitch, is attached at the first point of intersection, and 
made to pass obliquely through the remaining intersections of the longitudinal 
and circular divisions; whence progressing and winding through each point of 
intersection it arrives and stops in the same line from which it started, 
receding from the first to the eighth point, to which it was at first attached. In 
this manner, as it progresses through the eight points of the circumference, 
so it proceeds to the eighth point lengthwise.  Thus, also, fastening similar 
rules obliquely through the circumferential and longitudinal intersections, they 
will form eight channels round the shaft, in the form of a screw. 

3. To these rules or slips others are attached, also smeared with liquid pitch, 
and of these still others, till the thickness of the whole be equal to one eighth 
part of the length.  On the slips or rules planks are fastened all round, 
saturated with pitch, and bound with iron hoops, that the water may not injure 
them. The ends of the shaft are also strengthened with iron nails and hoops, 
and have iron pivots inserted into them.  On the right and left of the screw are 
beams, with a cross piece at top and bottom, each of which is provided with 
an iron gudgeon, for the pivots of the shaft to turn in, and then, by the 
treading of men, the screw is made to revolve. 

4. The inclination at which the screw is to be worked, is equal to that of the right 
angled triangle of Pythagoras: that is, if the length be divided into five parts, 
three of these will give the height that the head is to be raised; thus four parts 
will be the perpendicular to the lower mouth.  The method of constructing it 
may be seen in the diagram at end of the book.  I have now described, as 
accurately as possible, the engines which are made of wood, for raising 
water, the manner of constructing them, and the powers that are applied to 
put them in motion, together with the great advantages to be derived from the 
use of them.” 

 
From this description someone produced a sketch (reproduced below) which appears 
in many publications, ascribed to Vitruvius.  However, none of Vitruvius original 

                                                
2 Alternative translations of “∈νρ∈ν” 
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illustrations survive and all those in the 55 known handwritten manuscripts (earliest 
1486) of De Architectura3

 
 are interpretations from the period of the given edition. 

 
 

 
 
 
 
It has been suggested that the invention of the helical pump, or water screw, was an 
outworking of Archimedes’ mathematical studies, in particular his work “On Spirals”.  
However, the 28 propositions in “On Spirals” deal only with the two-dimensional 
figure that is the definition of a spiral.  Nowhere in that book, or in his two books on 
hydrostatics (“On Floating Bodies”) does he mention helices or the water screw. 
 
Dr Stephanie Dalley, a specialist in Assyrian archaeology at Oxford University, 
provides what to me is compelling evidence that my hero, Archimedes, did not invert 
the water screw.  She points to Sennacherib who ruled Assyria for 24 years, some 
400 years before Archimedes.  At the height of his powers Sennacherib had 
conquered the Chaldeans to the south (including the city of Babylon on the 
Euphrates River), the Phoenicians and Israelites to the west and probably a fair piece 
of Egypt.  His hometown was Nineveh, on the Tigris River, north west of modern-day 
Bagdad.  By about 700 BC he ruled a vast area that stretched from Southern Turkey 
to the eastern border of Egypt, and from the Caspian Sea to the Arabian Gulf.  
Nineveh was rebuilt with magnificent palaces, a city wall, an administrative centre, 
parks, and above all an immense irrigation system.  He built a canal for 48km from a 
dam on the River Gomel to the north.  He built another dam to the east to control the 
river Khasr that flowed through Nineveh.  Stephanie Dalley notes that in all he built 
18 different canal systems including tunnels and aqueducts.  “Provided that the 
technology was available, he had the manpower and the raw material to achieve 
whatever the wanted, regardless of time, expense, or detriment to the health of his 
workmen”.4

 

  However, where matters got really interesting in relation to our quest for 
the first use of a helix, is Dalley’s studies of a cuniform inscription where 
Sennacherib, in an Akkadian inscription written on clay prisms, describes his ability to 
make huge hollow copper and bronze castings and then: 

                                                
3 Vitruvius served as military engineer in the armies of Caesar and Augustus and worked with Marcus 
Aurelius, Publius Minidius and Gaius Cornelius to build projectile artillery and other war machines. 
 
Vitruvius began writing his famous work De architectura libri X, which he dedicated to Augustus, even 
before 33 B.C. and apparently completed it before 22 B.C. Unfortunately this book is said to be full of 
gaps and many of its passages are unclear and ambiguously formulated. 
 
Many important artists of the Renaissance, including Leonardo da Vinci, studied Vitruvius thoroughly.  
Vitruvius is one of the first Ancient authors whose work was printed (Editio princeps around 1486) and 
was translated into many European languages. The numerous sixteenth-century editions are important 
not only because of their commentaries and translations, but primarily because of the illustrations they 
contain. 
4 Dalley and Oleson, 2003 

Eight helical screw pump as 
interpreted from Vitruvius’ 
description 
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“In order to draw water up all day long I had ropes, bronze wires and bronze 
chains made, and instead of shadoofs I set up the great cylinders and 
alamittu palms over cisterns.  I made the royal lodges look just right.  I raised 
the height of the surroundings of the palace to be a wonder for all peoples.  I 
gave it the name: Incomparable Palace.  A park imitating the Amanus 
mountains I laid out next to it, with all kinds of aromatic plants, orchard fruit 
trees ……” 

 
Dalley postulates that the use of the words ‘alamittu palm’ was used as a metaphor 
to indicate a helix, and that Sennacherib had cast bronze or copper screw pumps. 
 
No remains of such pumps have been found, but it is pretty certain that he had the 
technology.  In the Louvre is a bronze cylinder, from the middle East, cast some 1200 
years BC, measuring 4.4m long, 180mm diameter and with a wall thickness of 
15mm.  In the British Museum is a Relief from the palace of Ashurbanipal, Nineveh 
that includes palm trees with stem patterns formed by crossing helices and from the 
same period are Assyrian cylindrical stamps that, when rolled on a clay pad, created 
pictures including palm trees with helical stems.5

 
 

 

 
 

Helical palms, detail from top part of a limestone relief from the palace of 
Ashurbanipal who established a very large library at Nineveh during his reign,  

668BC – 627BC 
 
Dalley provides good support for the view, that the famous Hanging Gardens of 
Babylon were not in Babylon but were Sennacherib’s gardens in Nineveh, a place 
that later became known as Old Babylon.  The Hanging Gardens were described by 
Strabo who, at about the time of Christ, wrote an amazing Geography of the then 
known world, and by Philo who states: 
 

“streams of water …… are partly forced upwards through bends and spirals to 
gush out higher up, being pushed through the twists of these devices by 

                                                
5 The Illustrated Bible Dictionary, Part 3, p1621. 
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mechanical forces.  So, brought together …… these waters irrigate the whole 
garden”. 

 
These descriptions of the Hanging Gardens post-date Sennacherib by 600 years and 
don’t prove that there were water screws at Nineveh, but they do support the 
hypothesis. 
 
On balance it rings as highly probable that before Sennacherib’s time someone 
invented a water-lifting device using some form of helix made from wood, or maybe 
the natural hollow helix of the horns of a Mountain Goat.  In Sennacherib’s time a 
device of this nature was cast in bronze and/or copper.  The Assyrians would then 
have introduced the concept to the Nile Valley in about 700 BC where it was the 
perfect device for lifting mud-laden waters, and where it was probably manufactured 
from wood.  And, probably, that’s where Archimedes first saw the device and 
subsequently took it to Europe.  But then – maybe not.  Possibly the young 
Archimedes had an eureka moment in Alexandria, long before as an older man he 
floated in the public baths in Syracuse and suddenly understood hydrostatics.  But I 
don’t think so, my vote is that the first use of a helix in a machine was in a water 
screw, somewhere in the area of Iran and Iraq, alongside the Tigris or Euphrates 
rivers, and more than 700 years BC. 
 
But was this the first use of a helix in engineering?  Was it used earlier in buildings? 
 
 

 
 

A modern Archimedes Screw Pump, Kinderdijk, photo M A Wijngaarden 
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3. THE  F IR S T HE L IX IN AR C HITE C T UR E  

We do not know, and will never know, when homo sapiens first thought of using a 
single helix to make a tool or build a structure.  In a remarkable, if somewhat long-
winded, book published in 1915, Sir Theodore Cook6

 

 presents “An account of spiral 
formations and their application to growth in nature to 
science and to art”.  In this book he covers a wide 
range of natural spirals and helices but does not deal 
with the civilisation of Mesopotamia.  He notes that the 
idea of a helix could have been gained from the human 
umbilical cord, from the horn of a Kudu, or from many 
shells and plants. 

 
 
 
 
 
 
 
 
 
 

   
 

Cut-away Voluta shell,  
Pacific Ocean, NSW 

 
Fasciolaria shell, Pacific 

Ocean, NSW 

 
Voluta shell, Pacific 

Ocean, NSW 
 
 
Personally I imagine that some 20000 years ago, or thereabouts, a Cro Magnon 
playing with the shell of a Turritella Duplicata, or a Pleurotama Monterosatoi, or any 
other of the numerous helical shells, discovered that when he or she twisted it into a 
layer of clay it “screwed” itself in, and resisted being pulled out.  Certainly we know 
that such shells were strung together in necklaces in Cro Magnon times. 
 
Cro Magnon’s no doubt made simple steps in and out of their cave shelters, if by no 
other means than by rearranging lumps of limestone, but we know they didn’t make 
spiral staircases.  The first spiral stairways were probably the inclined planes 
constructed around tower structures built by the Babylonians in about 6000 BC.  
Most of the early structures of this type, exposed by archaeological digs, are gently 

                                                
6 Reprinted, Dover Publications, New York, 1979. 

A near perfect natural 
helix created by a vine in 
the jungle on the island of 
Borneo, Indonesia 
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inclined ramps, with no steps.  Certainly by the 800s AD they had helical ramps.  
However, given the obvious nature of a step it is easy to believe that the Babylonians 
did have simple stepped helical ramps winding up the outside of their squat towers.  
So to answer the question posed in the previous chapter, it is probable that the first 
use made by homo sapiens of a helix in architecture and engineering was around a 
tower in Babylonia.  However, these were very unsophisticated structures and to find 
one of the first true helical staircases we have to travel in our minds to Egypt, not to 
the pyramids of 2500 BC, but to the later times of the early Greeks. 
 

 
 

Minaret of the Friday mosque, Samarra, built ~850 AD 
 
From about 300 BC there stood at Alexandria a lighthouse built from white marble.  It 
is said to have been about 110 metres high (a 35 story building) and was finished 
during the reign of Ptolemy II, in about 280 BC.  According to ancient Greek texts the 
lighthouse was built in three stages, all sloping slightly inwards from the base.  And 
inside was our point of interest, a spiral staircase from the base to the top, where a 
fire burned at night.  Apparently the lighthouse collapsed in an earthquake in the 
1300’s.  In AD 1477 the Mamluk Sultan Qa’it Bay built a fort from its ruins. 
 
Archimedes was in Alexandria in about 250 BC and maybe he climbed up the 
lighthouse to keep fit.  Certainly he would have returned to Syracruse with two uses 
of helices in his head, the screw sump and the spiral staircase. 
 
Interestingly it is also in Alexandria we must make our next stop, for a predecessor of 
a Leonardo da Vinci masterpiece that we will meet when, in due course, we move on 
to Orvieto in Italy. 
 
Carved out of rock near what was the fishing port of Rhakotis, the oldest part of 
Alexandria that predates Alexander the Great, is a “tour-de-force of rock 
architecture”.  This is Kom el-Shuqafa, or the “Mound of Shards”.  It is an 
underground burial place, also known as the Great Catacomb.  It was carved out of 
limestone in about 100 AD.  The complex consists of a ground level vestibule and 
then a deep spiral stairway that is wrapped around a 6m diameter shaft.  The shaft 
acted as a light well and is separated from the helical staircase by a wall consisting of 
squared blocks pierced by arched windows that have slanted sills in order to direct 
sunlight onto the stairs.  There are 99 steps that decease in height as they approach 
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the surface.  It is suggested that this design was to make it easier for the tomb 
visitors on the long climb out after viewing the deceased in the lower levels. 
 
The Great Catacomb is unique in representing a melding and mixing of Egyptian, 
Greek and Roman cultures.  The funerary motifs are pure ancient Egyptian, but the 
architects and artists were trained in the Greco-Roman style.  The decorations are of 
ancient Egyptian themes but with a Greco-Roman presentation that makes them 
unlike anything else in the world. 
 
So we have reached the point in our quest that would suggest that the use of a single 
helix in a spiral staircase, as opposed to a ramp around a tower, saw the light of day 
at about the same time as the helical pump, sometime around 1000 to 700 BC. 
 
The available evidence is that these applications predated the use of a simple screw 
by many hundreds of years. 
 
Rybezynski, in his lovely little book, One Good Turn7

 

 being “A 
natural history of the screwdriver and the screw”, accredits Hero 
of Alexander (10 to 70 AD) as the inventor of the screw press, 
and Archimedes, through his water pump, as the inventor of “the 
first appearance in human history of the helix”.  As already 
explained, I don’t agree with this conclusion, but I do accept 
Rybezynski’s conclusion that the metal screw was first used 
sometime in the 1400s.  I also accept Rybezynski’s conclusion 
that the screw and screwdriver are the most important tools ever 
invented; or maybe we should say; copied from nature.   

Their use permeates our lives, from the tiniest screw, to opening 
bottles of wine, and to Italian tomato crushers for making 
Conserva di Pomodora. 
 
 
     Helix for tomato crushing 
 
 

  Everyday helices 
 

                                                
7 Rybezynski, W.  One Good Turn, Soribner, 2000. 
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A helix used to core and peel an apple and slice it into an 
apple helix 

 
 
 
 
 
However, the trigger for my quest was the beautiful 
simplicity of the double helix as used in the Sydney Opera 
House underground parking station.  And we must 
continue our mental journey to find when the elegant 
simplicity of the double helix was first invoked, and how it 
was used in other structures before finding a home in the 
sandstone bedrock next door to Utzon’s masterpiece. 
 
 
 
This search has taken me from the entry vestibule of the 
Vatican Museum, into the chateau’s of the Loire Valley, 
and down a 15th Century well in Orvieto.  It ended in the 
most unexpected place, in a Qantas aeroplane, 35000 
feet above the Simpson Desert, when I saw a single 
picture of a structure in the badlands of Afghanistan, a 
structure so remarkable that if it is not the world’s first 
double helix in a building it deserves to be. 
 
 
 
 
 
 

Natural double helix; 
rainforest, Mosman 
Gorge, Australia 
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The Minaret of Jam, Afghanistan 
 
The Minaret of Jam, the world’s second tallest minaret, rises in solitude from the floor 
of a narrow, rugged, barren valley in Ghur Province, Afghanistan.  In bland terms this 
is a 60.4m high tower, built in 1175 containing a double helix stairway.  But bland this 
structure is not, and before presenting its detailed technicalities and historical 
context, its real flavour can be appreciated from the following article by Rory Stewart 
in the August 2002 New York Times magazine. 
 

“In a deserted maze of narrow gorges in the central mountains of 
Afghanistan, I turned a corner and saw a tower.  It rose 200 feet, a slim 
column of intricately carved terra cotta set with a line of turquoise tiles.  There 
was nothing else.  The mountain walls formed a tight circle around it, and at 
its base two rivers, descending from high mountain passes, ran through the 
ravines into wilderness. 
 
I was crossing Afghanistan on foot, and it had taken me two weeks to walk to 
this spot from Harat, the principal city of western Afghanistan.  The valley of 
Jam as the area is called, was a place of relative tranquillity, protected by 
high mountains from the pro-Taliban feudal lord to the south and the anti-
Taliban feudal lord to the north.  There was no human in sight, no sound, no 
sign of the last 24 years of Afghan war.  There was only a tower of pale, 
slender bricks, more than 800 years old according to an inscription at the top 
of the tower.  A dense chain of pentagons, hexagons and diamonds wound 
round the column.  And in Persian blue tiles, the colour of an Afghan winter 
sky, on the neck of the tower, the words: “Ghiyath al-Din Muhammad, King of 
Kings ….” 
 
The tower of Jam was first visited by a foreigner in 1957.  Several 
archaeologists subsequently made the difficult journey, but they were unable 



 14 

to decide what the tower had been.  The Russian invasion of 1979 stopped 
further visits from Western scholars.  Some archaeologists concluded that it 
had been part of a mosque, called it the minaret of Jam and looked for the 
lost city of the Turquoise Mountain in the valley.  They discovered very little 
except, to add to the mystery, a small 12th-century Jewish cemetery a mile 
and a half from its base.  Others asserted that this was a pre-Muslim holy site 
and that the tower had been built to mark the arrival of Islam in this most 
lonely and sacred spot.  Whatever their differences, the archaeologists had 
managed to agree on two things – that the tower was a uniquely important 
piece of early Islamic architecture and that it was in imminent danger of falling 
down. 
 
In the last decade, most of Afghanistan’s cultural heritage was removed or 
destroyed; the Kabul Museum was looted and the Bamiyan Buddhas were 
dynamited by the Taliban.  By the time of my visit, officers of the Society for 
the Preservation of Afghanistan’s Cultural Heritage had received no reliable 
reports on the tower of Jam for six months.  Indeed, no one in Kabul was sure 
whether the tower was still standing. 
 
I went inside the tower and began climbing the steep steps.  With 
considerable difficulty, I managed to ascend perhaps 120 feet, emerging into 
a circular chamber.  I continued up, climbing between portions of an old 
staircase, until I emerged just below the lantern, where the muezzins would 
step out to sing the call to prayer.  Above me were smoke-blackened wooden 
beams, which must have once supported an external balcony.  I looked out 
from the skylight and saw on the facing ridge two small ruined towers and, to 
my surprise, a line of trenches cut into the gravel slope. 
 
When I emerged from the tower, I found a man squatting on the ground, 
stroking his long beard.  Standing to greet me, he said in Persian: “Peace be 
upon you, may you not be tired.  How are you?  I hope you are well?” and 
other politenesses, all at a rapid pace with no pause for an answer. 
 
I gathered that this man was Bushire, the legendary fighter who was said to 
have led 80 men against the Soviets and then, during the last five years, 
fought the Taliban.  I had a letter of recommendation to him in Persian and 
took it out, but he waved it away because it was very likely he was illiterate.  
Instead, he invited me to his house. 
 
Below, near his mud house, I noticed a curious stone lying on the ground.  I 
picked it up and found that it was a piece of gray marble carved with a floral 
frieze.  Inside the guest room, we sat on the carpets while Bushire’s son fed 
the fierce fire in the stove with dry twigs. 
 
“What are you doing at the moment?” I asked. 
 
“I am a director of a society which has been set up to protect the tower,” 
Bushire said.  “We get money from foreigners abroad to preserve its history.” 
 
“And have you found out anything about the history of the tower?” 
 
“Well, we’ve dug up quite a lot of stuff from the ground.” 
 
“What kind of things?” 
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“Oh, we have sold most of them to traders from Heart, but I’m sure there are 
a few pieces left.  Son, go and see what there is next door.” 
 
His son, Abdullah, returned with a tray of green tea and some objects 
wrapped in a cloth.  There was a marble slab with a floral pattern (like the 
piece that I’d found outside); a terra-cotta ewer, apparently from the 12th 
century, covered with a bold black design of waves and fish eyes; a bronze 
six-sided die with five spots on each side; a hemispherical  bead carved from 
bone; and a large clay disc with a peacock in the center. 
 
“And where are these from?” I asked. 
 
“From all over the mountainside.” 
 
After tea, I climbed up the hill beside the tower.  The gravel was loose and the 
slopes steep, and I needed to use my hands.  I soon found myself clambering 
over rough trenches, some almost 10 feet deep.  Along the rim of the pits 
were piles of sand and broken fragments of pottery.  I passed shards of 
brilliant yellow porcelain, half of a terra-cotta bowl, a section of ancient gutters 
and some new spades and pick axes.  Clearly the antique robbers did not 
steel one another’s tools. 
 
Those digging had made no attempt to preserve the shape of the buildings 
they had found; only in a tiny section on the ridge could you even trace the 
walls of the rooms.  The villagers were tunneling as deeply and as quickly as 
possible to reach whatever lay beneath, and destroying a great deal in the 
process.  The trenches, which had been invisible from the base of the tower, 
now stretched across every slope in sight.  The villagers seemed to have 
succeeded where the archaeologists had failed.  They had uncovered what 
looked like an ancient city – and where rapidly laying it waste.” 

 
The minaret of Jam is covered with geometric and floral brickwork and turquoise-
glazed epigraphic bands.  One of the many peculiarities of the minaret is its almost 
exclusive dependence on varieties of angular script at a time when cursive had been 
in common use for hundreds of years for monumental inscriptions in that region.  The 
sole use of cursive is for the architect’s name, or signature, one Ali ibn Ibrahim al-
Nisaburi.  This suggests that Ali, or his family, was from the eastern Iranian city of 
Nishapur.  Now this is where it gets very interesting. 
 
Apart from it’s mines being the world’s source of turquoise (copper aluminium 
phosphate) for almost 2000 years, and hence the turquoise ceranuis on the minaret, 
Nishapur was the home of Omar Khaygám.  He lived from 1048 to 1131, about 100 
years before the minaret of Jam was built, and whilst most of the westerners know of 
him as a poet, he was a brilliant mathematician.  Given that he cracked the difficult 
problem of solving cubic equations, by a geometrical method of intersecting a circle 
with a parabola, I think he would have determined the elegance of a double helix, 
and worked out its simple geometry, whilst eating his cornflakes.  But let us return to 
the minaret. 
 
The mountainous province of Ghur, in which the minaret stands, was a marginal 
region of the eastern Islamic world that converted to Islam only in the ninth or tenth 
centuries – much later than many of the surrounding areas.  Ghur enjoyed its brief 
moment of glory in the half century after 1150, when one of the maliks (chiefs) of the 
region sacked Ghazna, the eponymous capital of the Ghaznavid sultans who had 
dominated the eastern Islamic world for almost one hundred and fifty years, and 
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assumed the title of sultan.  This dramatic event, which earned its perpetrator the 
sobriquet Jahan-soz (World-burner), marked the abrupt entry of these mountain 
chiefs onto the wider political stage and begin their meteoric rise from regional 
obscurity.  The apogee of the Ghurid sultanate was reached under the reign of the 
sultan brothers Ghiyath al-Din Muhammad b. Sam (1163 to 1203) and Mu’izz al-Din 
Muhammad b. Sam (1173 to 1206).  At its zenith in the last decade of the twelfth 
century, the Ghurid sultanate stretched from the Iranian metropolis of Nishpur in the 
west to the Indian city of Benares in the east, from the steppe of Central Asia in the 
north to Sind in the south.  The floruit of both dynasty and region was short-lived; the 
death of Mu’izz al-Din in 1206 effectively marked the end of Ghurid power and the 
disintegration of the sultanate. 
 
The minaret probably marks the site of the city of Firuzkuh which was the capital of 
the Ghurid dynasty.  The city itself was destroyed by the Mongols in 1222 but 
fortunately they didn’t knock down the minaret. 
 
The tower, at the junction of the Hari-rud River and its tributary Jam-rud, in the 
western extension of the Hindukush Mountains.  The minaret rises on an octagonal 
base (nominally 9m in diameter) and in this aspect departs from most 
contemporaneous minarets that have circular bases.  The octagonal base transforms 
into tapering circular sections for the rest of its elevation.  There are in effect three 
tapering cylindrical shafts with platforms at each step change in diameter.  The 
original entrance of the tower, which is currently inaccessible lies below 4 to 6 metres 
of alluvial deposits from the adjoining river.  The inner chamber is ascendable 
through a pair of helical stairs supported on a central tapering solid shaft.  These 
stairs terminate at the first step at a height of 40.8m.  The level of foundation has not 
yet been ascertained.  From existing information, the base of the tower has been 
considered six metres below the present level of the approach embankment for the 
structural assessment. 
 

 
 

Double helix staircase in the Minaret of Jan, Afghanistan 
 
The tower has an inclination of 3.4° north-north-eastwards, for a reason which is yet 
to be ascertained, but probably attributable to scouring due to its precarious location 
at the junction of two rivers.  The monument is on UNESCO’s World Heritage List 
and various threats to it have prompted the World Heritage Committee to incorporate 
it on the List of World Heritage in Danger since June 2002.  Preliminary 
investigations have revealed that one edge of the base section of the tower is very 
close to being in a state of tensile stress. 
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4. AN E XTR AOR DINAR Y  WE L L  AND A WONDE R F UL  S T AIR C AS E  

About 100km north of Rome is the hilltop village of Orvieto.  Apart from having an 
amazing cathedral, and one of the world’s greatest cappuccino shops, it has a most 
extraordinary well, the Pozzo di San Patrizio, carved into the tuff, and with donkey 
access by a double helix.  The story is as follows. 
 
In 1527, following the sacking of Rome, Pope Clemente VII, (Giulio de Medici) 
retreated to the Albornoz fortress on the steep sided volcanic mesa of Orvieto.  In 
order to provide a safe water supply in the event of a siege, Antonio da Sangallo the 
Younger (1484-1546) designed a well, 62m deep, to access fresh water in the porous 
tuffa.  The feature that makes this well so special is that carved out of the rock 
around the circumferences of the well are narrow ramps in a double helix.  There are 
windows from the sides of these ramps into the well.  Donkeys, carrying empty 
buckets could walk down one ramp and not have to pass their loaded mates slogging 
up into the companion ramp. 
 

 
 

1808 drawing of the well of San Patrizio, 
Orvieto (excavated ~1527) 

 
 

View down the well of San Patrizio, 
Orvieto.  There is a bridge just 

above the water at the bottom of the 
well. 

 
It is reasonable to deduce that the Orvieto well was a development of an equally 
remarkable well excavated in about 1176 under the direction of Salah al-Din Yusuf 
ibn Ayyub, known to Westerners as Saladin8

 
, at the Citadel (Qal’at al Jabal) in Cairo. 

Saladin’s early priorities were to protect Egypt from further Crusader attacks and to 
secure his position as Caliph. He set in motion the building of a citadel with a new 
enclosure on the Maqattam hills overlooking Cairo. One of the first tasks undertaken 
by his loyal vizier, Qaraqush, was a well to safeguard the water supply.  The work 
was done by Christian prisoners-of-war; it is reported that some 50,000 of such men 
were used in building the citadel9
 

 – a number I find difficult to believe. 

The well is known as Joseph’s (Yusuf’s) well, or the Spiral Well, or Bir al-Halazon10

                                                
8 General Saladin was sent from Syria to defend Cairo against the Crusaders.  Having 
succeeded in this he eventually established an empire that extended from Cairo to the 
borders of Mesopotamia. 

. It 
was documented in detail as part of the work of more than 150 scholars and 
scientists who accompanied Napoleon’s army, the occupiers of the Citadel from 1789 

9 Aramco World, March/April 1993 
10 “the Citadel of Cairo”, Ed Nasser Rabbat, The Aga Kahn Trust for Culture, 1989 
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to 1801.  These ‘savants’ produced an extraordinary 20 volume treatise on Egypt, 
including 11 volumes of beautiful drawings. The following figure is my tracing of the 
part of Plate 73 of Volume 7 that includes a scale drawing of the well. 
 
 

 
 
Yusuf’s Well, The Citadel, Cairo (from Vol 7 Recueil des Observations et des Researches, 
Quiont ete Faites en Egypte. Pendant L’Expedition de L’Armee Francaise, Paris 1822) 
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It can be seen that the well comprises two shafts, slightly offset.  They are square, 
the upper 4.6m by 4.6m, and the lower 2.5m by 2.5m. The water was lifted by two 
saqiah, comprising wheels turned by oxen that, in turn, operate 30m and 40m loops 
of rope carrying clay pots. A 2m wide helical ramp around the upper shaft allowed 
oxen and operators to reach the top of the first stage of the well11

 

. At this level the 
water was tipped into a cistern from which it was lifted to the surface by the upper 
saqiah.  

 

 
 

Cattle Operating Water Wheel (from Vol7 Recueil des Observations et des Recherches, 1822) 
 

 
 

The Mechanics  of a Saqiah (from Vol7 Recueil des Observations et des Recherches, 1822) 
 

                                                
11 The drawing by Napoleon’s scientists show the helical ramp terminating at the top of the 
lower saqiah but a drawing in the 1989 publication “The Citadel of Cairo” shows a narrower 
helical ramp extending to the bottom of the well. This would appear to be reasonable as it 
would have been nigh unto impossible to excavate a 2.5m by 2.5m, 40m deep, vertical shaft 
without such spiral access and the ventilation thereby provided. 
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It would seem reasonable to conclude that the idea for the form of construction of 
Yusuf’s well came from the Kom el-Shuqafa at Alexander, and it is quite possible that 
Sangallo The Younger knew about both these structures when the Pope asked him 
to provide a secure water supply at Orvieto.  But what Sangallo did that was so 
clever, was to add the second helix, so that donkeys going down did not have to pass 
the fully laden donkeys ascending from the bottom of the well. 

 
To add intrigue to the Pozzo di San Patrizio at Orvieto, 
we know that Sangallo the Younger had worked with, 
and learnt from, Leonardo da Vinci, who was his senior 
by 32 years  We also know that Leonardo was a fan of 
Archimedes and Leonardo’s notebooks include a 
drawing of a double helix staircase that looks 
remarkably like the Orvieto well. 
 
 
 
 
 
 
 
 
 
Drawing by Leonardo da Vinci  
for a double helix staircase, or ramp.  
(Paris Manuscript B, 1488-1490) 
 
 
 
 

 
In 1915, Leonardo, aged 64, moved to the small castle of Cloux, near the royal 
residence of his new patron, Francis I, at Amboise on the Loire. 
 
Francis I built the Chateau de Chambord, between 1519 and 1543, in part to be near 
his mistress, the Comtesse de Thoury.  Chambord is centred on a wonderful double 
helix spiral staircase. 
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Chambord Chateau, Loire 
 

 
 

Leonardo da Vinci’s Double Helix Staircase in Chambord Chateau 
 
It is almost certain that this is one of the few designs by Leonardo that reached 
fruition.  There is some evidence that much of Chambord was based on a Leonardo 
design for a chateau at Romorantin, for the king’s mother, but for me the double helix 
staircase is sufficient.  This was Leonardo’s last throw of the dice, he died on 2 May 
1519 at the age of 67. 
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5. A F INAL  TWIS T  

By the time I had finished the thought journeys that are documented in the previous 
chapters I had no doubt that the Sydney Opera House facility was the first time a 
double helix structure had been designed for such a purpose. 
 
It was with this certainty that, in March 2007, on a visit to my son in Cairns, I removed 
the plastic wrapper from the Peter Jones biography of Ove Arup.  Ove Arup was one 
of the most famous engineers of the 20th century and the crowning achievement of 
his consulting organisation (Ove Arup and Partners) was developing a structural 
method to implement Ulzon’s sketch of the shells of the Sydney Opera House.  My 
son, like all 5500 staff members of Arups, had been given a copy of the founders 
biography, but had not got round to reading it. 
 
In the steamy heat of Cairns I browsed vaguely through the section describing Ove 
Arup’s involvement in the Opera House and then couldn’t believe my eyes when I 
saw Photograph No 32, reproduced below.  What it showed was that in 1938, as part 
of designing air raid shelters in London, Ove Arup had designed an underground 
helical structure that was intended later to act as a car park.  Well, I thought, at least 
he didn’t think of the double helix.  But I had only to turn to page 74 to find out that I 
was wrong.  As Peter Jones says: “In his March version, Ove designed ramps in the 
form of two helixes, one inside the other, echoing his design of the penguin pool at 
London Zoo.”  Unfortunately we have been unable to locate the drawings of the 
double helix version, but we accept Peter Jones’ statement. 
 

 
 
Figure 2: Model of Ove’s design for helical underground shelter in Finsbury, intended 

for later use as car-parks, 1938. 
 
So, incredible as it seems, the double helix structure of the car park of the Sydney 
Opera House, was created unknowingly by Messrs Colefax, Barry and Barrelle to 
almost exactly mimic a 55 year old, never-built, Ove Arup design.  We can only 
wonder: “would Ove Arup personally have come up with the double helix design for 
the car park if he had been retained by one of the groups that submitted turnkey 
designs in response to the NSW Government tender of 1990?”  



 

ADDENDUM 
 

THE MATHEMATICS OF A HELIX AS GEOMETRY,  
AS A PUMP, A SPRING AND A PROPELLOR 

 
 
1. GEOMETRY 

The mathematics of a helix is very simple, yet the simplicity contains a wonderful 
elegance. 
 
As illustrated in Figure 1, the x, y, z coordinates of a point on the surface of a helix, at 
a radius ‘r’ from the centre are defined as 
 
 x = r cos 𝜃 ... (1) 
 y = r sin 𝜃 ... (2) 
 z =  𝒑𝜽

𝟐𝝅
  ... (3) 

 
where 
 
 𝜃 = angle of rotation from the starting point, in radians 
 p  = pitch of the helix, being the rise in one revolution 
 r = radius to the point 
 

 
 

Figure 1: Helix Geometry 
 
A horizontal cut through a helix is a horizontal line, and a tangent to a helix is at a 
constant angle to the axis. 
 
The next question that may spring to mind is; what shape do I cut a sheet of paper, 
or steel or whatever, so as to make a single flight of a helix, i.e. one rotation?  In one 
sense the answer is that this cannot be done.  Because, although a helix is just an 
inclined plane wrapped around an axis, it cannot be created without distorting the 
material that is cut from the flat sheet.  While a piece of a flat sheet can be tilted 
without doing internal work on the substance making up that sheet, internal work has 
to be done to deform a helix.  However, it is easy, by hand, to input the necessary 
energy to form a piece of paper into a helix, and with a powerful machine this can be 
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done to steel.  The plan geometry of the piece to be deformed is determined as set 
out below. 
 
To create a helix with the following properties; 
 
 Inside diameter = d 
 Outside diameter = D 
 Pitch diameter = P 
 
it is necessary to first calculate the developed inside and outside diameters.  These 
are: 
 

• Developed outside diameter, A = �(𝝅𝑫𝟐) +  𝒑𝟐 
• Developed inside diameter, B = �(𝝅𝒅𝟐) +  𝒑𝟐 
• The width of the helix, b = (𝑫−𝒅)

𝟐
 

 
To make this helix we must draw inside and outside radii of  
 
 r = (B x b)/(A – B) 
 R  =  r + b 
 

 
 

Figure 2: First flight of mesh glued to pegs setting out the helix 
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Figure 3: Second flight of mesh glued into place 
 

 
 

Figure 4: Completed single helix, two flights 
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To demonstrate this process to yourself you can make up a single helix using 
successive circular pieces as illustrated in the following photographs. 
 
The elegance of the mathematics of a helix is taken to a quite extraordinary level in 
work of Sir Robert Stawell Ball (1840 to 1913) which he published in 1900 as A 
Treatise on the Theory of Screws.  This amazing work deals with the mechanics 
(movements and forces) of solid bodies, eschewing any reference to our usual 
Cartesian (x, y, z) coordinate system.  It is based on two well established theorems, 
which are actually facts.  These are: 
 

1. a free rigid body can be moved from any one position and orientation 
in space, to any other position and orientation, by a movement 
consisting of a rotation around a straight line, accompanied by 
translation parallel to that line (Chasles, 1830), and 

2. any system of forces which act upon a rigid body can be replaced by a 
single force, and a couple in a plane perpendicular to that force 
(Poinsot, 1806). 

 
Building on these statements, Robert Bell, builds his theory, first in simple English, 
but then followed by, to me, incomprehensible mathematics.  His simple English is: 
the motion of any rigid body “is precisely the same as if it were attached to the nut of 
a uniform screw (in the ordinary sense of the word) which had an appropriate position 
in space, and an appropriate number of threads to the inch.” 
 
I have attempted to follow Ball’s reasoning, and maths, many times, and each time 
advance a few pages further into the 500 pages of a 1998 reprint1

 

.  However, Ball 
clearly recognises that audiences would find his procedures obscure, and so in 1887 
he gave a talk, to The Mathematical and Physical Section of the British Association, 
in the form of a delightful parable, involving a committee that included Mr Helix, Mr 
Cartesian, Mr Commonsense and others.  It is a long parable, but the following 
extracts give an understanding of what Ball was on about. 

There was once a rigid body which lay peacefully at rest.  A committee of 
natural philosophers was appointed to make an experimental and rational 
inquiry into the dynamics of that body.  The committee received special 
instructions.  They were to find out why the body remained at rest, 
notwithstanding that certain forces were in action.  They were to apply 
impulsive forces and observe how the body would begin to move.  They were 
also to investigate the small oscillations.  These being settled, they were then 
to ____ But here the chairman interposed; he considered that for the present, 
at least, there was sufficient work in prospect.  He pointed out how the 
questions already proposed just completed a natural group.  “Let it suffice for 
us,” he said, “to experiment upon the dynamics of this body so long as it 
remains in or near to the position it now occupies.  We may leave to some 
more ambitious committee the task of following the body in all conceivable 
gyrations through the universe.” 
 
The committee was judiciously chosen.  Mr Anharmonic undertook the 
geometry.  He was found to be of the utmost value in the more delicate parts 
of the work, through his colleagues thought him rather prosy at times.  He was 
much aided by his two friends, Mr One-to-One, who had charge of the 

                                                
 
1 Cambridge University Press, Paperback 0-531-63650-7. 
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homographic department, and Mr Helix, whose labours will be seen to be of 
much importance.  As a most respectable, if rather old-fashioned member, Mr 
Cartesian was added to the committee, but his antiquated tactics were quite 
out-manoeuvred by those of Helix and One-to-One.  I need only mention two 
more names.  Mr Commonsense was, of course, present as an ex-officio 
member, and valuable service was rendered even by Mr Querulous, who 
objected at first to serve on the committee at all.  He said that the inquiry was 
all nonsense, because everybody knew as much as they wished to know 
about the dynamics of a rigid body.  The subject was as old as the hills, and 
had all been settled long ago.  He was persuaded, however, to look in 
occasionally. 
 
The committee assembled in the presence of the rigid body to commence 
their memorable labours.  There was the body at rest, a huge amorphous 
mass, with no regularity in its shape – no uniformity in its texture.  But what 
chiefly alarmed the committee was the bewildering nature of the constraints 
by which the movements of the body were hampered.  They had been 
accustomed to nice mechanical problems, in which a smooth body lay on a 
smooth table, or a wheel rotated on an axle, or a body rotated around a point.  
In all these cases the constraints were of a simple character, and the possible 
movements of the body were obvious.  But the constraints in the present case 
were of puzzling complexity.  There were cords and links, moving axes, 
surfaces with which the body lay in contact, and many other geometrical 
constraints.  Experience of ordinary problems in mechanics would be of little 
avail.  In fact, the chairman truly appreciated the situation when he said, that 
the constraints were of a perfectly general type. 
 
In the dismay with which this announcement was received Mr Commonsense 
advanced to the body and tried whether it could move at all.  Yes, it was 
obvious that in some ways the body could be moved.  Then said 
Commonsense, ‘Ought we not first to study carefully the nature of the 
freedom which the body possesses?  Ought we not to make an inventory of 
every distinct movement of which the body is capable?  Until this has been 
obtained I do not see how we can make any progress in the dynamical part of 
our business.’ 
 
Mr Querulous ridiculed this proposal.  ‘How could you,’ he said, ‘make any 
geometrical theory of the mobility of a body without knowing all about the 
constraints?  And yet you are attempting to do so with perfectly general 
constraints of which you know nothing.  It must be all waste of time, for 
though I have read many books on mechanics, I never saw anything like it.’ 
 
Here the gentle voice of Mr Anharmonic was head.  ‘Let us try, let us simply 
experiment on the mobility of the body, and let us faithfully record what we 
find.’  In justification of this advice Mr Anharmonic made a remark which was 
new to most members of the committee:  he asserted that, though the 
constraints may be of endless variety and complexity, there can be only a 
very limited variety in the types of possible mobility. 
 
It was therefore resolved to make a series of experiments with the simple 
object of seeing how the body could be moved.  Mr Cartesian, having a 
reputation for such work, was requested to undertake the inquiry and to report 
to the committee.  Cartesian commenced operations in accordance with the 
well-known traditions of his craft.  He erected a cumbrous apparatus which he 
called his three rectangular axes.  He then attempted to push the body 
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parallel to one of these axes, but it would not stir.  He tried to move the body 
parallel to each of the other axes, but was again unsuccessful.  He then 
attached the body to one of the axes and tried to effect a rotation around that 
axis.  Again he failed, for the constraints were of too elaborate a type to 
accommodate themselves to Mr Cartesian’s crude notions. 
 
To him it appeared that the body could only move in a highly complex 
manner; he saw that it could accept a composite movement consisting of 
rotations about two or three of his axes and simultaneous translations also 
parallel to two or three axes.  Cartesian was a very skilful calculator, and by a 
series of experiments even with his unsympathetic apparatus he obtained 
some knowledge of the subject, sufficient for purposes in which a vivid 
comprehension of the whole was not required.  The inadequacy of Cartesian’s 
geometry was painfully evident when he reported to the committee on the 
mobility of the rigid body.  ‘I find,’ he said, ‘that the body is unable to move 
parallel to z, or to y, or to z; neither can I make it rotate around x, or y, or z; 
but I could push it an inch parallel to x, provided that at the same time I 
pushed it a foot parallel to y and a yard backwards parallel to z, and that it 
was also turned a degree around x, half a degree the other way around y, and 
twenty-three minutes and nineteen seconds around z.’ 
 
‘Is that all?’ asks the chairman.  ‘Oh, no,’ replied Mr Cartesian, ‘there are 
other proportions in which the ingredients may be combined so as to produce 
a possible movement,’ and he was proceeding to state them when Mr 
Commonsense interposed.  ‘Stop!  stop!’ said he, ‘I can make nothing of all 
these figures.  This jargon about x, y and z may suffice for your calculations, 
but if fails to convey to my mind any clear or concise notion of the movements 
which the body is free to make.’ 
 
Many of the committee sympathised with this view of Commonsense, and 
they came to the conclusion that there was nothing to be extracted from poor 
old Cartesian and his axes.  They felt that there must be some better method, 
and their hopes of discovering it were raised when they saw Mr Helix 
volunteer his services and advance to the rigid body.  Helix brought with him 
no cumbrous rectangular axes, but commenced to try the mobility of the body 
in the simplest manner.  He found it lying at rest in a position we may call A.  
Perceiving that it was in some ways mobile, he gave it a slight displacement 
to a neighbouring position B.  Contrast the procedure of Cartesian with the 
procedure of Helix.  Cartesian tried to force the body to move along certain 
routes which he had arbitrarily chosen, but which the body had not chosen; in 
fact the body would not take any one of his routes separately, though it would 
take all of them together in a most embarrassing manner.  But Helix had no 
preconceived scheme as to the nature of the movements to be expected.  He 
simply found the body in a certain position A, and then he coaxed the body to 
move in any way the body liked to any new position B.” 
 
With the aid of a skilful mechanic he prepared a screw with a suitable pitch, 
and adjusted this screw in a definite position.  The rigid body was then 
attached by rigid bonds to a nut on this screw, and it was found that the 
movement of the body from A to B could be effected by simply turning the nut 
on the screw.  A perfectly definite fact about the mobility of the body had thus 
been ascertained.  It was able to twist to and fro on a certain screw. 
 
The success of Helix encouraged him to proceed with the experiments, and 
speedily he found a second screw about which the body could also twist.  He 
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was about to continue when he was interrupted by Mr Anharmonic, who said, 
“Tarry a moment, for geometry declares that a body free to twist about two 
screws is free to twist about a myriad of screws.  These form the generators 
of a graceful ruled surface known as the cylindroids.  There may be infinite 
variety in the conceivable constraints, but there can be no corresponding 
variety in the character of this surface.  Cylindroids differ in size, they have no 
difference in shape.  Let us then make a cylindroid of the size, and so place it 
that two of its screws coincide with those you have discovered; then I promise 
you that the body can be twisted about every screw on the surface.  In other 
words, if a body has two degrees of freedom the cylindroid is the natural and 
the perfectly general method for giving an exact specification of its mobility”. 
 
A single step remained to complete the examination of the freedom of the 
body.  Mr Helix continued his experiments and presently detected a third 
screw, about which the body can also twist in addition to those on the 
cylindroid.  A flood of geometrical light then burst forth and illuminated the 
whole theory.  It appeared that the body was free to twist about ranks upon 
ranks of screws all beautifully arranged by their pitches on a system of 
hyperboloids.  After a brief conference with Anharmonic and One-to-One, 
Helix announced that sufficient experiments of this kinds has now been made. 
 
With perfect lucidity Mr Helix expounded the matter to the committee.  He 
exhibited to them an elegant fabric of screws, each with its appropriate pitch, 
and then he summarised his labours by saying, ‘About every one of these 
screws you can displace the body by twisting, and, what is of no less 
importance, it will not admit of any movement which is not such a twist.’  The 
committee expressed their satisfaction with this information.  It was both clear 
and complete.  Indeed, the chairman remarked with considerable force that a 
more thorough method of specifying the freedom of the body was 
inconceivable. 
 
The discovery of the mobility of the body completed the first stage of the 
labours of the committee, and they were ready to commence the serious 
dynamical work.  Force was now to be used, with the view of experimenting 
on the behaviour of the body under its influence.  Elated by their previous 
success the committee declared that they would not rest satisfied until they 
had again obtained the most perfect solution of the most general problem. 

 
And so the parable continues for many pages, and sets out how with three terms 
being defined for the operation of a helix, namely ‘pitch’, ‘twist’ and ‘wrench’, a 
complete mathematics for the mechanics of a rigid body of any shape can be defined 
without recourse to Cartesian coordinates. 
 
In the early 20th century, Ball’s work sank into obscurity, but was revived post-1960 
when it was found to be of great practical importance to robotics. 
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2. HELICIAL SPRING 

As noted in Section 1, above, it is not possible to cut a flat piece of material, and form 
it into a helix without imparting strain energy into the material, i.e. without distorting 
the material.  Equally well, it is not possible to flatten a helix without expending 
energy.  That is why steel helices make such good springs. 
 
The common, round wire, helical compression spring is shown in Figure 5.  The key 
parameters from the viewpoint of spring characteristics are the: 
 

• Diameter of the wire : d 
• Mean diameter : D 
• Pitch ; P, or coil angle: 𝛼, and 
• Number of active coils (360°), which may be less than the total 

number of coils if the end coils are closed and/or ground flat: Nt. 
 

 
 

Figure 5: Forces and stresses in a helical spring 
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Figure 5 shows the load and stress distribution in a round wire helical spring under 
load.  In order to maintain equilibrium there must be a shear force F in the wire and 
an equilibrating rotational moment FD/2.  The enlarged section through the wire 
shows that there are four components of force on this surface, namely: 
 
 Shear Force  = F cos 𝛼 
 Compressive Force = F sin 𝛼 

Torque = 𝑭𝑫𝐜𝐨𝐬𝜶
𝟐

 

Bending Moment  = 𝑭𝑫𝐬𝐢𝐧𝜶
𝟐

 
 
If the helix angle, 𝛼, is small, which is true for close coiled springs, then 
 
 sin 𝛼 ≈ 0 
 cos 𝛼 ≈ 1 
 
Hence, only the shear force and torque are significant.  The maximum combined 
shear stress at the inside surface of the wire is: 
 

𝝉𝒎𝒂𝒙 =  
𝑭𝑫
𝟐

×
𝒅
𝟐

�𝝅𝒅𝟒𝟑𝟐 �
+  

𝟒𝑭
𝝅𝒅𝟐

 

 
 =  𝟖𝑭𝑫

𝝅𝒅𝟑
+ 𝟒𝑭

𝝅𝒅𝟐
 

 
 = 𝟖𝑭𝑫

𝝅𝒅𝟑
�𝟏 + 𝒅

𝟐𝑫
�   ... (4) 

 
This equation is written as 
 
 𝝉𝒎𝒂𝒙 =  𝟖𝑭𝑫

𝝅𝒅𝟑
 × 𝑲 

 
Where K is a stress factor and requires modification from the value of 1 + 0.5 d/D to 
allow for the fact that the curvature of the helical spring causes stress concentration 
and hence higher stresses than given by equation 4, above.  This influence gives the 
following factor2

 
 

 𝑲 =  𝟒𝒄−𝟏
𝟒𝒄−𝟒

+ 𝟎.𝟔𝟏𝟓
𝑪

 
 
where 
 
 C = D/d (Spring Index) 
 
The deflection of a spring under the force F is obtaining using Castigliano’s theorem 
which states: 
 
When forces act on elastic systems subject to small displacements corresponding to 
any force collinear with the force is equal to the partial derivative to the total strain 
energy with respect to that force. 

                                                
 
2 Wahl, A M.  Mechanical Springs, 2nd Ed, 1963.  Reprinted by Spring Manufacturers Institute, 
1993. 
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The strain energy includes that due to shear and that due to torsion. 
 
Strain Energy U = 𝑻

𝟐𝑰
𝟐𝑮𝑱

+ 𝑭
𝟐𝑰

𝟐𝑨𝑮
 

where 
 

G = shear modulus ≈ 79GPa 
T = FD/2 
I = 𝜋Dn 
A = 𝜋d2/4 

 
Replacing T = FD/2, I = 𝜋Dn, A = 𝜋d2/4 the formula becomes 
 
 Strain Energy U = 𝟒𝑭

𝟐𝑫𝟑𝒏
𝒅𝟒𝒈

+  𝟐 𝑭𝟐𝑫𝒏
𝒅𝟐𝑮

 
 
Using Castiglianos theorem to find the total strain energy ... 
 
 𝜹 =  𝝏𝑼

𝝏𝑭
=  𝟖𝑭𝑫

𝟑𝒏
𝒅𝟒𝑮

+  𝟒𝑭𝑫𝒏
𝒅𝟐𝑮

 
 
Substituting the spring index C 
 
 𝜹 =  𝟖 𝑭 𝑪𝟑𝒏

𝑮𝒅
 �𝟏 + 𝟏

𝟐𝑪𝟐
� 

 
In practice the term (1 + 0,5/C2) which approximates to 1 can be ignored. 
 
Hence the spring stiffness is 
 
 𝒌 =  𝑭

𝜹
=  𝑮𝒅

𝟖𝒄𝟑𝒏
 � 𝑪𝟐

𝑪𝟐+ 𝟎,𝟓
� 

 
In practice the term (C2/(C2 = 0,5)) which approximates to 1 can be ignored, so 
 
 𝒌 =  𝑮𝒅

𝟖𝒄𝟑
𝒏  

  ...(5) 
 
Despite the simplifying assumptions, Equation 5 agrees well with experimental data. 
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3. HELICAL PUMP 

Whether or not the helical pump was invented by Archimedes, or by an unknown 
Assyrian, it is universally known as the Archimedes Screw.  We have already 
discussed Vitruvius’s design for such a screw pump, a design that was presumably 
based on experimentation, and which was very difficult to build, because of its eight 
flights.  Empirical design processes were used until recent times to build such screw 
pumps.  It was found that the geometry of an Archimedes screw is governed by its 
outer radius, length and slope, and its inner radius, number of blades, and pitch of 
the blades.  The external parameters are usually determined by the location of the 
screw and how much material is to be lifted.  The internal parameters, however, are 
free to be chosen to optimise the performance of the screw. 
 
In 2000, Chris Rorres published a detailed analysis of the functioning of an 
Archimedes screw3

 

, and developed the mathematics to allow optimisation of the 
design.  However, before summarising his findings it is worth noting that it has long 
been recognised that there is a limit on how fast a screw pump can be turned.  Nagel 
observed that the rotational velocity of a screw, in revolutions per minute, should not 
be more than 50/D2/3, where D is the diameter of the outer cylinder in meters.  If the 
screw is rotated much faster, turbulence and sloshing prevent the cavities from being 
filled.  The screw churns the water in the lower reservoir and does not efficiently lift it.  
This was obviously not a problem in Egyptian times, no matter how many slaves 
were employed. 

Chris Rorres solved the tricky geometric calculation of the volume of water in one 
cycle of the screw, i.e. in one of the moving ‘buckets’ that transfers water up the 
rotating helix4

 
 (see Figure 6). 

 
 

Figure 6: Figure from Rorres (2000) 
 
The answer is complicated and results in the following equation: 
 

                                                
 
3 Rorres, C.  The Turn of the Screw: Optimal Design of an Archimedes Screw.  Journal of 
Hydraulic Engineering, January 2000. 
4 A ‘bucket’ is “one of the maximally connected regions occupied by the trapped water within 
any one chute, where a chute is the region bounded by two adjacent blades”. 
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 𝒗 =  𝑽𝑻
𝝅𝑹𝟎

𝟐𝚲
=  𝑵𝑽𝑩

𝝅𝑹𝟎
𝟐𝚲

=  𝑵
𝟐𝝅∫ 𝜸𝑩(𝝋) 𝒅𝝋𝝋𝟏

𝝋𝟎
 

 
where 
 
 VT = volume of water in one cycle of the screw (m3) 
 N =  number of blades 
 R0  = radius of screw’s outer cylinder 
 VB =  volume of one bucket 

 𝛾𝐵(𝜑) =  a dimensionless parameter being a ratio of the cross-sectional area 
of the water in a bucket at a position along the screw, and the 
square of the outer radius. 

 𝚲 = pitch of one blade (m) 
 
There is a restriction on the pitch of the screw, Λ, that is necessary for water to be 
trapped in the screw.  This means that 
 
 𝚲 ≤ 𝟐𝝅𝑹𝒐

𝑲
 

 
where 
 
 K = the slope of the screw (m/m, i.e. dimensionless) 
 
Having determined the equation for the volume of a ‘bucket’ and the limit on the 
pitch, for a given slope, Rorres summarises the problem as: 
 

“Given the number of blades, outer radius and slope, find the inner radius and 
pitch that will maximise the volume of water emptied into the upper reservoir 
with each turn of the screw”. 

 
The original paper can be referenced for details of the solution, which Rorres 
summarises in two figures, reproduced here as Figure 7, which give the optimal 
values of three items, namely: 
 

1. the pitch ratio = 𝑲𝚲
𝟐𝝅𝑹𝒐

 

2. the radius ratio = 𝑹𝒊
𝑹𝒐

, and 

3 the optimal volume per turn ratio = 𝑽𝑻∗
𝝅𝑹𝟎

𝟐𝚲
, where 

VT* = 𝟏.𝟓𝟐𝑹𝟎
𝟑

𝑲
  

 
and VT* is the optimal volume per turn. 

 
Rorres’ calculations show that Vitruvius’ design had an efficiency of about 83% of the 
optimal design.  Not bad for an empirical Roman engineer. 
 
Most modern screw pumps have 1, 2 or 3 blades, and for these cases the optimal 
design is summarised as per Figure 8. 
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Figure 7: Solutions by Rorres for Optimised Archimedes pump 
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Figure 8: Optimised practical pump 
 
 
4. THE SCREW AS A POWER GENERATOR 

While the Archimedean screw has been used as a pump for thousands of years, it is 
only since the latter decade of the 20th century that it has been shown to be excellent 
for hydropower under low head difference conditions (Muller and Senior5

 
). 

A German company, Ritz-Atro is a leader in this field and their research (Hellman6

 

) 
has shown the following advantage of this application of a helix. 

• no control system – the screw matches itself automatically to the 
supply frequency and the water supply, 

• the efficiency is greater than with comparable waterwheels and small 
turbines, 

• flat stable efficiency gradient, 

• robust, long wearing, trouble free, 

• no cleaning, little maintenance, 

• no fine screens necessary, 

• little underground digging required in comparison to turbines, 

• fish pass through the screw unhindered and unharmed, 

• water is oxygenated. 
 

                                                
 
5 Muller, G and Senior, J (2009).  Simplified Theory of Archimedean Screws.  Journal of 
Hydraulic Research, Vol 47, No. 5. 
6 Hellman, H D (2003).  Gutachten Wirkungsgrabestimmung Einer Wasserkraftschnecke.  
Fabrikat Ritz-Altro.  Technical University Kaiserslautern. 

EMPIRICAL GUIDELINES 
PRIOR TO WORK BY 
RORRES 
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Under full design flow a helical generator (hydrodynamic screw) has an efficiency of 
about 84%, but an important feature is that at only 30% of design flow the efficiency 
is still very close to 80%.  The work by Muller and Senior has shown that the 
efficiency increases with decreasing screw angle and increases with the number of 
turns (flights). 
 
At a head difference at 8m, and a flow of 1000 lit/sec, a hydrodynamic screw 
generates about 50kW.  At half this flow, and a head difference of only 2m, a screw 
will generate about 5kW which is similar to a fairly serious scale wind generator.  And 
so we find that a helix, that probably first found application in pumping water in 
Assyrian times, has found application as a small-is-beautiful, clean generator of 
electricity in our power hungry age. 
 
 
 

 
 
 
 

 
 
 

Two Ritz-Atro GmbH Screw Power Generators in Germany 
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5. THE PROPELLOR 

The earliest simple propeller was some form of windmill, like those made famous by 
the Dutch.  Leonardo di Vinci designed a screw propeller for his helicopter, clearly 
based on the work on Archimedes that we know he read.  He also designed an 
automatic roasting spit where the rotation of the meat was generated by a propeller 
turning by the rising hot air in the chimney (see Figure 9).  What material he 
proposed for the propeller so that it would not catch fire is not known! 
 

 
 
Leonardo was fascinated by the use of helical screws, work he built on earlier 
developments by the Sienese engineer, Francesco di Giorgio,  Francesco produced 
numerous clever designs based on helices (see for example Figure 10), which are 
largely overlooked relative to those of Leonardo, mainly, I suspect, because 
Leonardo was such a brilliant draftsman, and also because he has had better press.. 
 

Figure 9: Leonardo’s 
automatic spit roast; 
powered by the hot air 
turning a propeller 
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Figure 10: Column lifted by Francesco di Giorgio (1480) 
 
 
 
There were some attempts in the late 1700’s to use crude helical propellers to power 
vessels.  For example, David Bushnell’s 1775 submarine, The Turtle, was powered 
using hard operated single flight helices for vertical and horizontal movement. 
 
It was the development of steam engines in the late 1700’s, and particularly the 
application of such power in driving ships, that saw the major developments in 
propellers based on helices, or parts of helices. Although James Watt is credited as 
being the first to fit a screw propeller to a steam engine, most of the early steam 
ships were fitted with paddle wheels. These were inefficient, and between about 
1825 and 1840 there were many patents for various types of propeller, all based on 
parts of helices (see Figure 11). 
 
 One of the more interesting contributions to this development process was by Sir 
Thomas Livingston Mitchell, then Surveyor General of New South Wales7.  He 
acquired a British patent8 in 1848 for the ‘Bomerang9

 

 Propeller’, which he had started 
experimenting with in 1836. 

                                                
 
7 Sir Thomas Livingston Mitchell was also an explorer and collector of geological and 
botanical specimens (J.H.L Cumpston, “Thomas Mitchell”, Webb, 1954). 
8 Sir Thomas acquired his patent through a London agent, Joseph Blunt, for this 
“improvement in propelling vessels” (Judy Wing, 1966.  A History of the Patent Profession in 
Australia). 
9 This is how he spelled boomerang 
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Figure 11: Screw propeller on vessel ‘Archimedes’ –  
patented in 1839 by Francis Petit Smith 

 
Sir Thomas was a brilliant, irascible, workaholic, who was educated in the classics, 
showed precocious talent as an artist and geometer at the age of 9, could read Latin, 
Greek and French, and clashed with every governor of New South Wales between 
his arrival in 1827 and death in 1855.  It is best to let Sir Thomas describe his work 
on what he called the Bomerang10

 

 Propeller using the draft notes he prepared for a 
presentation to the Australian Society on 30 December 1850. 

Of all the novelties presented by New Holland, or New South Wales to the European, 
the original human inhabitant has always appeared to me by far the most interesting.  
Could he but tell us his history.  What may be gathered from his language?  Is there 
anything occult amongst his coradjes (or priests), handed down by tradition or can 
we learn anything from his arts? Seeing how simple and yet efficient his tools and 
appliances are, Nature alone, or his Maker, must have taught him these when the 
Australian man first began to exist. How ancient then may these weapons be; so few 
in number yet so efficient! 
 
The spear and bomarang are available either in war or the chase- although the club 
seems chiefly for warlike purposes. The missiles are nicely adapted to the resistance 
of fluids, and the law of gravitation! Even in the form of clubs the centre of gravity 
seems to have been most fully considered. 
 
But it is in the use of such missiles and clubs that these children of nature show how 
well they know her laws. By means of the woomera (wammerah), or throwing stick, 
the spear is thrown with much greater momentum, and, of course elevated velocity. 
The angular club, the rotary shield, the elastic handle of the stone hatchet all appear 
very original, but yet strictly consistent with whatever science teaches, and not 
susceptible of improvement by anything to be learnt at colleges. 
 
The bomarang is one of the most remarkable of these missiles.  Its flight through the 
air, from the hand of an Australian native seems in strict obedience to his will.  In its 
return after a very varied course to the foot of the thrower, this weapon seems so 
extraordinary that a Vice President of the Royal Society (Bailey), about twelve years 
ago, observed to me “that its path through the air was enough to puzzle a 
mathematician”. 
 

                                                
 
10 His spelling of boomerang 
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Such a remark by one of the ablest mathematicians of his time was not forgotten.  On 
the contrary, it was remembered on the next occasion when I had opportunity of 
studying the flight of bomerangs thrown by the hands of Australian Aborigines, and 
then I perceived that in its rotary motion through the air, a hollow centre of greater or 
less diameter, but usually of about one third of the disc, was described by the whirl of 
the boomerang and it occurred to me that the centre of the whirling motion might be 
found in a line of equilibrium which should divide the surface acting on the air  into 
three portions in such manner as that the eccentric portions should equal the central 
one. The discovery of this centre, insignificant as it may appear, was still something 
new, for on attaching a centre to a boomerang, it was possible to show that this 
centre was not only driving its rotary motion, the centre of that motion, but also the 
centre of gravity when in the state of rest, while it was apart from and quite clear of 
every part of it. 
 
The natives when bent on exhibiting the more curious flights, twist the boomerang, by 
placing it at the fire, evidently for the purpose of giving it the property of spiral 
movement, thus showing how well they understand the screw-action upon the air.  
On making a small wooden model with a spiral turn like a screw, and giving it by 
means of an attached centre, and the fork and cord of a humming-top, rapid rotary 
motion, the model ascended to the roof of the room with such force as to be broken 
in pieces against it.  Thus far I had proceeded in my study of the bomerang, when I 
last went to England on leave of absence. 
 
There is much in discovery to reward and encourage the most patient investigations; 
but that any new application of a mechanism power could be devised from such a 
source, I always doubted myself.  I considered the property I had discovered in the 
bomerang worth keeping secret.  It was known in those days to one of my sons only, 
a native of the colony, and it died with him. 
 
On Tuesday 11th January 1848, after having dined with the Master and Wardens of 
the Stationers’ Company of the City of London11

 

; I met at a Ball in Upper Harley 
Street, Mr Brunel, and after asking various questions about sails and sailways, I 
enquired whether the principle of the screw had yet been fairly applied to water?  He 
replied “Not at all? There is still a great discovery to be made there?” 

Like Bailey’s remark made ten years before, which led first to my study of the 
boomerang, this reply of Brunel determined me to try experiments; and I bespoke a 
set of driving wheels to be applied to a bomerang propeller in a boat. 
 
A lecture I heard at the Royal Institution in March of the same year, by Professor 
Cowper – on paddle wheels and propellers – was concluded in these words – “Until 
the propeller can be made so as to be free from lateral resistance, great speed 
cannot be attained by this means, but whoever invents a propeller which shall not 
have this defect, will make a very great discovery”. 
 
That remark determined me to take out a Patent, having been adapted to sail for 
Australia before I could complete my experiments.  The result of these experiments 
(for which have since had leisure) and of much subsequent study, I now lay before 
the Australian Society. 
 
In order to continue my history of this investigation, it is in keeping that I should state 
that having had a boat built at Sydney and attached a small boomerang propeller to 
                                                
 
11 The worshipful Company of Stationers and Newspaper Makers, London.  Established 1403. 
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the boat, and worked it with the driving wheels, turned by two men, the results 
induced me to send to England for a small steam engine which, with the obliging 
attention of Mr Daniel Cooper Senior, of 3 Corphall Chambers, arrived in due course. 
 
The power of this engine being only that of three men, and equal only to two men, 
when the power of the third, lost by friction, was considered; was not great enough 
for such display of speed as I could have wished – although it was sufficient and 
perhaps even the best, for testing the accurate working of the bomerang on the 
water.  The boat was ill-adapted for the purpose, very crank12

 

 and so leaky that the 
wheels worked partly in the water – nevertheless the result was surprisingly 
satisfactory.   

Sir Thomas did not have the understanding of hydrodynamics to analyse and design 
a propeller, but then nobody at that time had integrated the pressure differential work 
of Bemoulli, with the force equilibrium of Newtown, to understand airfoil behaviour.  
Now we understand that a propeller in air is just a special spinning wing, although a 
propeller in water is somewhat different.  However, by his experiments with 
Boomerangs Sir Thomas determined that the Australian Aboriginals had discovered 
airfoil lift many thousands of years before Bemoulli.  It is also clear from his other 
writings that Sir Thomas recognised the limitations of the screw propeller that had 
been patented by Sir Francis Petit Smith in 1836 (see Figure 11) and demonstrated 
on the 237 ton steam yacht Archimedes.  In a handwritten note Sir Thomas wrote as 
follows: 
 

“In the Archimedes, where the screw was first employed for the propulsion of 
vessels – the single term screw was substituted for the original screw of three 
turns; the decision of the single turn into two, four, six and eight parts or 
segments was next tried, and the two-threaded13

 

 screw, consisting of two half 
turns. 

Still there was lateral resistance; and what was called “choking of the centre” 
– hence the use of rotary paddles composed of sections of screws, and the 
form last adopted similar to the two vanes of a windmill, as used in the Great 
Britain.” 

 
In 1853, Thomas Mitchell published a substantially extended version of the notes for 
his Australian talk that are quoted above.  The booklet is titled “Origin, History and 
Description of the Bomerang Propeller”, being a lecture delivered to the United 
Services Institution, London on 22 June 1853. 
 
The illustrations in that booklet provide a clear understanding of the design.  His 
Figures 1 and 2, reproduced herein as Figure 12, show that his design comprised a 
boomerang draped over a helix.  He then shows a sketch of the first boomerang 
“ever applied to water” (see Figure 13).  It must have generated substantial vibrations 
because of its eccentricity around the shaft.  However, he partly solved this problem 
by solving another problem; to quote: 
 

“But it was soon ascertained that none of the apertures in the dead wood of 
vessels would admit the Bomerang, as one blade, and it would be necessary 
to divide it into two blades.  This could easily be done, still preserving all its 
properties of equilibrium, obliquity, concavity and convexity, by attaching the 

                                                
 
12 Crank adj. Liable to lurch or capsize, as a ship. The Macquarie Dictionary 
13 A double helix. 
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blades to the shaft in the same relative position, only attaching then so that 
they occupied but half of the fore-and-oft space.  This will easily be 
understood by any of these models.”  (see Figure 14). 

 

 
 

Figure 12: The Design Concept for the “Bomerang Propeller” 
 

  
 

Figure 13: The First “Bomerang 
Propeller” 

 
Figure 14: Method of Shortening the 

“Bomerang Propeller” 
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He then proceeds to describe a very impressive test of the propeller on a ship.  The 
Keera in Sydney Harbour (see Figure 15).  In his words: 
 

“In the remote colony where by official 
duties obliged me to remain, four years 
had elapsed after I had taken out a patent, 
and no prospect appeared even then, of 
my having ever an opportunity of attaching 
to any vessel of sufficient dimensions to 
test on a large scale, a propeller which 
had afforded such encouraging results 
with a boat. 
 
At length the “Keera” arrived in Sydney 
from England, with engines of 70-horse 
power, and a three-bladed screw, driven 
by a multiple of 3.  The diameter of the 
propeller was 5 ft. 8 inches; the pitch 8 
feet.  With this propeller the vessel could 
be made to attain only an average speed 
of 6 or 7 knots per hour.  The owners, 
Messrs. Smith & Co., allowed me to apply 
a Bomerang Propeller (cast at Sydney by 
Mr Struth,) of the same diameter and pitch 
as the “Keera’s” own screw, which had 
267 square inches more surface than the Bomerang Propeller made for this 
trial.  The result was remarkable, and the local government and the public of 
Sydney, felt so much interest in it, that I was allowed leave of absence from 
my office, to come to England, that I might introduce this invention in the 
country to which they have to look across seas so vast that any method of 
crossing them more rapidly, appears to them important. 
 
The Keera, with the Bomerang Propeller at her stern, passed over one knot or 
geographical mile, in port Jackson, in five minutes, which was exactly twelve 
knots an hour; and, in a trip down the harbour four or five miles, her speed 
corresponded to this rate – thus nearly doubling the speed obtained by her 
English propeller, which never exceeded seven knots an hour.” 

 
In 18 Mitchell was granted leave of absence so as to market his invention in England 
and so finally make his fortune.  His tests, trials and tribulations in England are too 
complex and extensive to do justice in this document, but suffice it to say he had 
some very large propellers made in Liverpool, constrained in length by the available 
spaces in the test ships, met mixed success, and had to return to New South Wales 
before cracking the market and making his fortune. 
 
I do not know whether anybody in modern times has properly tested, or analysed Sir 
Thomas Mitchell’s Bomerang Propeller but it does seem to me that the modern 
propellers on ‘silent’ submarines bear an uncanny resemblance to Sir Thomas’ 
designs. 
  

Figure 15: The propeller  
of the Keera 
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Turning to the 21st Century, the designs of propellers for aircraft, ships, silent 
submarines and wind generators, have become very sophisticated and are based on 
extensive computer and physical modelling.  The mathematics of lift, thrust and 
torque is beyond the scope of this document, but let it be noted that silting behind all 
the designs is the basic form of the helix. 
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